Headerbild

Formelsammlung und Berechnungsprogramme
Maschinen- und Anlagenbau

pixabay.com  

Hinweise     |     

Update:  11.09.2022

Werbung


Umfassende Informationen, leichte Verständlichkeit und schnelle Nutzbar­keit der Auslegungs- oder Berechnungsgleichungen ermÜglichen die sofortige Dimensionierung von Bauteilen.




Das Standardwerk der Ingenieure in Studium und Beruf mit den Schwerpunkten „Allgemeiner Maschinenbau“.


Menue
www.schweizer-fn.de


Festigkeitsberechnungen Pressung - Platten - Knickung

Pressung

Flächen- und Lagerpressung

Flächenpressung
Flächenpressung
Flächenpressung


Lagerpressung
Lagerpressung
Lagerpressung


p  = Flächenpressung (N/mm²)
F   = Belastung (N)
b   = Breite (mm)
l   = Länge (mm)
d   = Lagerdurchmesser (mm)
p  = Flächenpressung (N/mm²)
F   = Belastung (N)
b   = Breite (mm)
l   = Länge (mm)
d   = Lagerdurchmesser (mm)
Zulässige Pressungswerte N/mm² - [1]
Werkstoffart ruhende Belastung schwellende Belastung
Zähe
Werkstoffe
zul. Pressung zul. Pressung
SprĂśde
Werkstoffe
zul. Pressung zul. Pressung

σdF = Druck Fließgrenze (N/mm²)
σ dB = Bruchfestigkeit (N/mm²)

nach oben

Hertzsche Pressung -

Die Hertzsche Pressung ist gĂźltig bei:
- lineare, elastische, homogene und isotrope Werkstoffe
- Kontaktfläche eben und klein gegenßber den Abmessungen der KÜrper
- Reibungsfreiheit, keine Schubspannung in der Kontaktfläche
Festigkeitswerte fĂźr Hertzsche Pressung

PunktberĂźhrung Kugel - Kugel


Punktpressung
Punktpressung
bei Stahl mit μ = 0,3
Punktpressung
Radius
E_Modul
Berßhrungsfläche

Punktpressung
Berßhrungsfläche
bei Stahl mit μ = 0,3
Berßhrungsfläche
Gesamtabplattung - Näherung der beiden KÜrper
Abplattung
PunktberĂźhrung Kugel - Ebene
Punktpressung
Bei der Ebene wird r2 ∞ somit wird r = r1


Punktberßhrung Kugel - konkave Fläche
Punktpressung
Radius r2 wird negativ r2 < 0

p0 = Druck in der Mitte der Berßhrungsfläche - (N/mm²)
r 1,2 = KrĂźmmungsradius KĂśrper 1,2 (mm)
F   = Druckbelastung (N)
μ   = Querzahl (Poisson-Zahl) (-)
E 1,2 = E-Modul KĂśrper 1,2 (mm)
a   = Radius der Druckfläche (mm)
δ   = Gesamtabplattung (mm)
>
p0 = Druck in der Mitte der Berßhrungsfläche - (N/mm²)
r 1,2 = KrĂźmmungsradius KĂśrper 1,2 (mm)
F   = Druckbelastung (N)
μ   = Querzahl (Poisson-Zahl) (-)
E 1,2 = E-Modul KĂśrper 1,2 (mm)
a   = Radius der Druckfläche (mm)
δ   = Gesamtabplattung (mm)
>

Berechnungsprogramm - Hertzsche Pressung PunktberĂźhrung

Berechnung der Hertzsche Pressung bei PunktberĂźhrung zweier Kugeln bzw. einer Kugel auf der Ebene.


nach oben

LinienberĂźhrung Zylinder - Zylinder


Linienpressung
Linenpressung
Radius
E_Modul
Berßhrungsfläche

Linienpressung
Berßhrungsfläche
bei Stahl mit μ = 0,3
Berßhrungsfläche
PunktberĂźhrung Zylinder - Ebene

Linienpressung
Bei der Ebene wird r2 ∞ somit wird r = r1
Formeln gleich wie bei Zylinder - Zylinder

p0 = Druck in der Mitte der Berßhrungsfläche - (N/mm²)
r 1,2 = KrĂźmmungsradius KĂśrper 1,2 (mm)
F   = Druckbelastung (N)
μ   = Querzahl (Poisson-Zahl) (-)
E 1,2 = E-Modul KĂśrper 1,2 (mm)
a   = Halbe Breite der Druckfläche (mm)
l   = Länge der Druckfläche (mm)
p0 = Druck in der Mitte der Berßhrungsfläche - (N/mm²)
r 1,2 = KrĂźmmungsradius KĂśrper 1,2 (mm)
F   = Druckbelastung (N)
μ   = Querzahl (Poisson-Zahl) (-)
E 1,2 = E-Modul KĂśrper 1,2 (mm)
a   = Halbe Breite der Druckfläche (mm)
l   = Länge der Druckfläche (mm)

Berechnungsprogramm - Hertzsche Pressung LinienberĂźhrung

Berechnung der Hertzsche Pressung bei LinienberĂźhrung zweier Zylinder bzw. eines Zylinders auf der Ebene.




nach oben

Platten

Die folgenden Gleichungen fĂźr Platten sind nur gĂźltig unter der Voraussetzung
- Plattendicke klein zur Flächenabmessung
- Durchbiegung klein zur Flächenabmessung

Rechteckplatte mit gleichmäßiger Belastung

Gelenkig gelagert Rand

Rechteckplatte aufliegend

Spannungen Plattenmitte
Spannungen
Durchbiegung Plattenmitte
Durchbiegung
Eckkräfte
Eckkräfte
Eingespannter Rand

Rechteckplatte eingespannt

Spannungen Plattenmitte
Spannungen
Durchbiegung Plattenmitte
Durchbiegung
max. Spannungen Mitte am langen Rand
Spannungen
p  = Flächenbelastung (N/mm²)
a  = Halbe Plattenlänge (lange Seite) (mm)
b  = Halbe Plattenbreite (kurze Seite) (mm)
h  = Plattendicke (mm)
E  = E-Modul (N/mm²)
σx = Spannung in x-Richtung (N/mm²)
σy = Spannung in y-Richtung (N/mm²)
f  = Durchbiegung (mm)
F  = Eckkräfte (N)
C1,...g,e = Konstante (-)
Bei unten aufgefĂźhrtem Berechnungsprogramm werden die Konstanten ausgegeben.
p  = Flächenbelastung (N/mm²)
a  = Halbe Plattenlänge (lange Seite) (mm)
b  = Halbe Plattenbreite (kurze Seite) (mm)
h  = Plattendicke (mm)
E  = E-Modul (N/mm²)
σx = Spannung in x-Richtung (N/mm²)
σy = Spannung in y-Richtung (N/mm²)
f  = Durchbiegung (mm)
F  = Eckkräfte (N)
C1,...g,e = Konstante (-)
Bei unten aufgefĂźhrtem Berechnungsprogramm werden die Konstanten ausgegeben.

Berechnungsprogramm - Konstanten fĂźr Plattenberechnung

Berechnung der Berechnungskonstanten fĂźr die Plattenberechnung.


nach oben

Kreisplatte mit gleichmäßiger Belastung

Gelenkig gelagert Rand

Kreisplatte aufliegend

Spannungen Plattenmitte
Spannungen
Durchbiegung Plattenmitte
Durchbiegung

Eingespannter Rand

Kreisplatte eingespannt

Spannungen Plattenmitte
Spannungen
Durchbiegung Plattenmitte
Durchbiegung
Spannungen am Rand
Spannungen
p  = Flächenbelastung (N/mm²)
R   = Plattenradius (mm)
h   = Plattendicke (mm)
E   = E-Modul (N/mm²)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
f   = Durchbiegung (mm)
p  = Flächenbelastung (N/mm²)
R   = Plattenradius (mm)
h   = Plattendicke (mm)
E   = E-Modul (N/mm²)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
f   = Durchbiegung (mm)
nach oben

Kreisplatte mit Belastung in der Kreismitte

Die einwirkende Kraft in der Mitte, ist gleichmäßig auf einer Kreisfläche mit Radius b verteilt.

Gelenkig gelagert Rand

Kreisplatte aufliegend
Spannungen Plattenmitte
Belastung p
Spannung
Durchbiegung Plattenmitte
Durchbiegung

Eingespannter Rand

Kreisplatte eingespannt
Spannungen Plattenmitte
Spannungen
Durchbiegung Plattenmitte
Durchbiegung
Spannungen am Rand
Spannungen
p  = Flächenbelastung (N/mm²)
F   = Kraft aus der Flächenbelastung (N)
b   = Belastungsradius (mm)
R   = Plattenradius (mm)
h   = Plattendicke (mm)
E   = E-Modul (N/mm²)
μ   = Querzahl (Poisson-Zahl) (-) (N/mm²)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
f   = Durchbiegung (mm)
p  = Flächenbelastung (N/mm²)
F   = Kraft aus der Flächenbelastung (N)
b   = Belastungsradius (mm)
R   = Plattenradius (mm)
h   = Plattendicke (mm)
E   = E-Modul (N/mm²)
μ   = Querzahl (Poisson-Zahl) (-) (N/mm²)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
f   = Durchbiegung (mm)

nach oben

Elliptische Platte mit gleichmäßiger Belastung

Randbedingung
a > b ( a = X-Richtung - b = Y-Richtung )

Eingespannter Rand
Ellipse eingespannt

Spannungen Plattenmitte
Spannungen
Spannungen
Durchbiegung Plattenmitte
Durchbiegung
Spannungen am Ende der kleinen Achse
Spannungen
Spannungen am Ende der großen Achse
Spannungen
p  = Flächenbelastung (N/mm²)
a   = große Halbachse (mm)
b   = kleine Halbachse (mm)
h   = Plattendicke (mm)
E   = E-Modul (N/mm²)
μ   = Querzahl (Poisson-Zahl) (-) (N/mm²)
σ x = Spannungen in X-Richtung (N/mm2)
σ y = Spannungen in Y-Richtung (N/mm2)
f   = Durchbiegung (mm)
p  = Flächenbelastung (N/mm²)
a   = große Halbachse (mm)
b   = kleine Halbachse (mm)
h   = Plattendicke (mm)
E   = E-Modul (N/mm²)
μ   = Querzahl (Poisson-Zahl) (-) (N/mm²)
σ x = Spannungen in X-Richtung (N/mm2)
σ y = Spannungen in Y-Richtung (N/mm2)
f   = Durchbiegung (mm)
nach oben

Gleichseitige Dreieck-Platte mit gleichmäßiger Belastung

Gelenkig gelagert Rand

Dreieckplatte aufliegend

Plattensteifigkeit
Spannungen
Spannung im Plattenschwerpunkt
Spannungen
Durchbiegung im Plattenschwerpunkt
Durchbiegung
Max. Spannungen tritt bei x=0,129*a und y=0 auf
Spannungen
p  = Flächenbelastung (N/mm²)
a   = große Halbachse (mm)
b   = kleine Halbachse (mm)
h   = Plattendicke (mm)
E   = E-Modul (N/mm²)
μ   = Querzahl (Poisson-Zahl) (-) (N/mm²)
σ x = Spannungen in X-Richtung (N/mm2)
σ y = Spannungen in Y-Richtung (N/mm2)
f   = Durchbiegung (mm)
p  = Flächenbelastung (N/mm²)
a   = große Halbachse (mm)
b   = kleine Halbachse (mm)
h   = Plattendicke (mm)
E   = E-Modul (N/mm²)
μ   = Querzahl (Poisson-Zahl) (-) (N/mm²)
σ x = Spannungen in X-Richtung (N/mm2)
σ y = Spannungen in Y-Richtung (N/mm2)
f   = Durchbiegung (mm)


nach oben

Scheibe

Bei Scheiben handelt es sich um Flächentragwerke, die in ihrer Ebene belastet werden.

Kreisscheibe mit gleichmäßiger Streckenlast


Kreisscheibe

Spannungen
Spannungen
q  = Streckenlast (N/mm)
h   = Scheibendicke (mm)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
τ rt = Schubspannung (N/mm2)
q  = Streckenlast (N/mm)
h   = Scheibendicke (mm)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
τ rt = Schubspannung (N/mm2)

Kreisringscheibe mit gleichmäßiger Streckenlast außen und innen

Kreisringscheibe
Spannungen
Spannungen
qa = Streckenlast außen (N/mm)
q i = Streckenlast innen (N/mm)
r a = Außenradius (mm)
r i = Innenradius (mm)
r   = Radius Spannungsort (mm)
h   = Scheibendicke (mm)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
τ rt = Schubspannung (N/mm2)
qa = Streckenlast außen (N/mm)
q i = Streckenlast innen (N/mm)
r a = Außenradius (mm)
r i = Innenradius (mm)
r   = Radius Spannungsort (mm)
h   = Scheibendicke (mm)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
τ rt = Schubspannung (N/mm2)
nach oben

Kreisringscheibe mit Schubbelastung


Kreisringscheibe

Einwirkende Schubspannung
Spannungen
Spannungen
Spannungen
τa = Schubbelastung außen (N/mm2)
τ i = Schubbelastung innen (N/mm2)
r a = Außenradius (mm)
r i = Innenradius (mm)
r   = Radius Spannungsort (mm)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
τ rt = Schubspannung (N/mm2)
τa = Schubbelastung außen (N/mm2)
τ i = Schubbelastung innen (N/mm2)
r a = Außenradius (mm)
r i = Innenradius (mm)
r   = Radius Spannungsort (mm)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
τ rt = Schubspannung (N/mm2)

Unendlich ausgedehnte Scheibe mit Bohrung


unendliche Scheibe

Innendruck in der Bohrung
Spannungen
Spannungen
Spannungen
qa = Streckenlast (N/mm)
p   = Druck in der Bohrung (N/mm²)
h   = Scheibendicke (mm)
r i = Bohrungsradius (mm)
r   = Radius Spannungsort (mm)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
τ rt = Schubspannung (N/mm2)
qa = Streckenlast (N/mm)
p   = Druck in der Bohrung (N/mm²)
h   = Scheibendicke (mm)
r i = Bohrungsradius (mm)
r   = Radius Spannungsort (mm)
σ r = Radialspannung (N/mm2)
σ t = Tangentialspannung (N/mm2)
τ rt = Schubspannung (N/mm2)


nach oben

Beanspruchung umlaufender Bauteile durch Fliehkräfte


Wenn man die äußeren Kräfte an den Massenelementen ansetzt, lassen sich die Spannungen und Verformungen mit der Winkelgeschwindigkeit ω ermitteln.

Winkelgeschwindigkeit

Winkelgeschwindigkeit
ω  = Winkelgeschwindigkeit (1/s)
T = Zeit (s)
nsec = Drehzahl pro Sekunde (1/s)
nmin = Drehzahl pro Minute (1/min)
ω  = Winkelgeschwindigkeit (1/s)
T = Zeit (s)
nsec = Drehzahl pro Sekunde (1/s)
nmin = Drehzahl pro Minute (1/min)
nach oben

Umlaufender Stab

Spannungen und Verformungen im Stab durch die Masse am Stabende mit dem Abstand l1.


Radialspannung im Abstand r

Stab Radialspannung

Verformung im Abstand r

Stab Verformung
Stab
σr = Radialspannung (N/m2)
u = Verformung im Abstand r (m)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
m = Masse am Stabende (kg)
A = Spannungsquerschnitts (m2)
E = E-Modul (N/m2)
l = Stablänge (m)
l1 = Abstand Massenschwerpunkt (m)
r = Abstand Spannungsquerschnitt (m)
σr = Radialspannung (N/m2)
u = Verformung im Abstand r (m)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
m = Masse am Stabende (kg)
A = Spannungsquerschnitts (m2)
E = E-Modul (N/m2)
l = Stablänge (m)
l1 = Abstand Massenschwerpunkt (m)
r = Abstand Spannungsquerschnitt (m)
nach oben

DĂźnnwandiger Ring


Tangentialspannung

Ring Tabgentialspannung

Verformung

Ring Verformung
Ring
σt = Tangentialspannung (N/m2)
u = Verformung (m)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
R = Mittelradius Ring (m)
E = E-Modul (N/m2)
σt = Tangentialspannung (N/m2)
u = Verformung (m)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
R = Mittelradius Ring (m)
E = E-Modul (N/m2)
nach oben

Vollscheibe mit konstanter Dicke

Bei einer Scheibe ist die Scheibendicke klein im Verhältnis zum Außenradius der Scheibe.
FĂźr eine schmale Scheibe kann angenommen werden, dass die axiale Spannung σx=0 ist.


Radialspannung

Scheibe voll Radialspannung

Tangentialspannung

Scheibe voll Tangentialspannung

Verformung

Scheibe voll Verformung

Berechnungskonstante

Scheibe voll Berechnungskonstanten
Scheibe1
σr = Radialspannung (N/m2)
σt = Tangentialspannung (N/m2)
u = Verformung (m)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
R = Außenradius (m)
r = Radius der Spannung bzw. Verformung (m)
E = E-Modul (N/m2)
ν = Querdehnungszahl (-) = 0,3
c1 = c3 = Berechnungskonstante (-)
σr = Radialspannung (N/m2)
σt = Tangentialspannung (N/m2)
u = Verformung (m)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
R = Außenradius (m)
r = Radius der Spannung bzw. Verformung (m)
E = E-Modul (N/m2)
ν = Querdehnungszahl (-) = 0,3
c1 = c3 = Berechnungskonstante (-)
nach oben

RingfĂśrmige Scheibe mit konstanter Dicke


Radialspannung Randbedingung

Ringscheibe Randbedingung

Radialspannung

Ringscheibe Radialspannung

Tangentialspannung

Ringscheibe Tangentialspannung

Verformung

Ringscheibe Verformung

Berechnungskonstante

Ringscheibe Berechnungskonstanten
Scheibe2
σr = Radialspannung (N/m2)
σt = Tangentialspannung (N/m2)
u = Verformung (m)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
R = Außenradius (m)
r = Radius der Spannung bzw. Verformung (m)
ra = Außenradius der Scheibe (m)
ri = Innenradius der Scheibe (m)
E = E-Modul (N/m2)
ν = Querdehnungszahl (-) = 0,3
c1 = c3 = Berechnungskonstante (-)
σr = Radialspannung (N/m2)
σt = Tangentialspannung (N/m2)
u = Verformung (m)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
R = Außenradius (m)
r = Radius der Spannung bzw. Verformung (m)
ra = Außenradius der Scheibe (m)
ri = Innenradius der Scheibe (m)
E = E-Modul (N/m2)
ν = Querdehnungszahl (-) = 0,3
c1 = c3 = Berechnungskonstante (-)
nach oben

Dickwandiger Hohlzylinder

Infolge der behinderten Querdehnung, treten bei dickwandigen Hohlzylindern in Längsrichtung zusätzlich Axialspannungen auf σx.


Radialspannung

Ringscheibe Radialspannung

Tangentialspannung

Ringscheibe Tangentialspannung

Axialspannung

Ringscheibe Axialspannung
Zylinder
σr = Radialspannung (N/m2)
σt = Tangentialspannung (N/m2)
σx = Axialspannung (N/m2)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
r = Radius der Spannung bzw. Verformung (m)
ra = Außenradius der Scheibe (m)
ri = Innenradius der Scheibe (m)
ν = Querdehnungszahl (-) = 0,3
σr = Radialspannung (N/m2)
σt = Tangentialspannung (N/m2)
σx = Axialspannung (N/m2)
ρ = Dichte (kg/m3)
ω = Winkelgeschwindigkeit (1/s)
r = Radius der Spannung bzw. Verformung (m)
ra = Außenradius der Scheibe (m)
ri = Innenradius der Scheibe (m)
ν = Querdehnungszahl (-) = 0,3
nach oben

Knickung

Elastische Knickung - Euler

Je nach Schlankheitsgrad des Stabes wird die Berechnung in elastische oder unelastische Knickung eingeteilt.
Bei schlanken Stäben (λ > λp - elastischer Bereich) wird nach Euler gerechnet und bei gedrungenen Stäben (λ < λp - unelastischer Bereich) nach Tetmajer bzw. Engesser.

Knickkraft und Knicklänge bei verschiedenen Lastfällen

Die Knickkraft ist die Kraft bei der das elastische Ausknicken beginnt.

Lastfall 1 Lastfall 2 Lastfall 3 Lastfall 4
Lastafall 1 Lastafall 2 Lastafall 3 Lastafall 4
lk = 2 * l lk = l lk = 0,7 * l lk = 0,5 * l
Lastafall 1 Lastafall 2 Lastafall 3 Lastafall 4
Fk = Knickkraft (N)
E   = E-Modul (N/mm²)
I   = kleinstes axiales Trägheitsmoment (mm4 )
l k = Knicklänge (mm)
l   = Stablänge (mm)
nach oben

Knickspannung und Schlankheitsgrad

Die Knickspannung nach Euler ist von der Querschnittsform, Knicklänge und E-Modul abhängig, nicht von der Werkstofffestigkeit.
Knickung ist ein Stabilitätsproblem kein Spannungsproblem.

Schlankheitsgrad des Knickstabs
Schlankheitsgrad
Knickspannung in Abhängigkeit vom Schlankheitsgrad - Eulerformel
Eulerformel
Grenzschlankheitsgrad fĂźr die GĂźltigkeit der Eulerformel
Grenz-Schlankheitsgrad
Grenz-Schlankheitsgrad
Erforderliches Trägheitsmoment
Trägheitsmoment
λ  = Schlankheitsgrad (-)
l k = Knicklänge (mm)
i   = Trägheitsradius (mm)
I   = kleinstes axiales Trägheitsmoment (mm4 )
A   = Querschnitt (mm²)
σ k = Knickspannung (N/mm2)
E   = E-Modul (N/mm²)
λ p = Grenz-Schlankheitsgrad (-)
σ dp = Druck-Streckgrenze (N/mm2)
λ  = Schlankheitsgrad (-)
l k = Knicklänge (mm)
i   = Trägheitsradius (mm)
I   = kleinstes axiales Trägheitsmoment (mm4 )
A   = Querschnitt (mm²)
σ k = Knickspannung (N/mm2)
E   = E-Modul (N/mm²)
λ p = Grenz-Schlankheitsgrad (-)
σ dp = Druck-Streckgrenze (N/mm2)
nach oben

Unelastische Knickung - Tetmajer - Engesser

Bei Überschreiten der Proportionalitätsgrenze, gibt es keinen Zusammenhang zwischen Spannung und Dehnung.
In diesem Bereich, wenn der Schlankheitsgrad λ < λ p ist, ist die Eulerformel nicht mehr gĂźltig.
FĂźr diese im unelastischen Bereich stattfindenden Knickung gibt es folgende Formeln:
- Tetmajerformel
- Engesserformel
Der Anstieg der Spannungs-Dehnungslinien ßber der Streckgrenze, ist bei Tetmajer eine Gerade und bei Engesser durch einen Tangentenmodul berßcksichtigt der durch die Streckgrenze begrenzt ist. Mit der Engesserformel erhält man ein konservativeres Ergebnis (siehe Diagramm).

Knickspannung nach Tetmajer

Tetmajerformel
Werkstoff a b c
S235JR (St37) 0 -1,14 335
E295/E395 (St50/60) 0 -0,62 335
5% Ni-Stahl 0 -2,3 470
GG20 0,053 -12 775
Nadelholz 0 -0,194 29,3

σk = Knickspannung (N/mm2)
λ   = Schlankheitsgrad (-)
a - b - c  = Berechnungsfaktoren (-)
σ dp = Druck-Streckgrenze (N/mm2)
E   = E-Modul (N/mm²)

σk = Knickspannung (N/mm2)
λ   = Schlankheitsgrad (-)
a - b - c  = Berechnungsfaktoren (-)
σ dp = Druck-Streckgrenze (N/mm2)
E   = E-Modul (N/mm²)

Knickspannung nach Engesser


Engesserformel

Die Gleichung ist iterativ zu lĂśsen.


Knickspannungsverlauf fĂźr S235JR (St37) nach Euler, Tetmajer und Engesser


Diagramm Knickspannung

Berechnungsprogramm - Engesser Knickung

Berechnung der unelastischen Knickspannung nach Engesser


Knicksicherheit

Knicksicherheit
Knicksicherheit
Sk = Knicksicherheit (-)
F k = Knickkraft (N)
F d = auftretende Druckkraft (N)
σ k = Knickspannung (N/mm2)
σ d = Druckspannung (N/mm2)
A   = Querschnittsfläche (mm²)
Sk = Knicksicherheit (-)
F k = Knickkraft (N)
F d = auftretende Druckkraft (N)
σ k = Knickspannung (N/mm2)
σ d = Druckspannung (N/mm2)
A   = Querschnittsfläche (mm²)
nach oben